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INTRODUCTION

In clinical follow-up studies, subjects are monitored at regular time intervals for a
medical condition. It is often the case that an event under observation can take place in
between two successive visits, and it may not be possible for the subject to know the time
to such event exactly. For example, consider the situation in which a group of women
at high risk for breast cancer is asked to take a chemopreventive substance for a fixed
time period. At the end of the period, each participating woman is required to submit
a blood or urine sample at regular intervals in order to monitor the level of a validated
intermediate biomarker. Let X denote the time from cessation of use of the agent to the
loss of its protective effect qualified as a return to baseline value of the biomarker. If a
woman submits a sample for assay on a daily basis, the value of X can be observed exactly,‘
unless the protective effect is still present by the time the study is terminated so that X
is right-censored in the usual sense of survival analysis. In practice, however, the follow-up
interval can be a week or longer; therefore the exact value of X is generally unknown but
is known to lie between the time points L and R, where L is the number of days from
cessation of agent intake to the last time the sample was assayed and the protective effect
was still present, and R is the number of days from cessation of agent intake to the most
recent time the sample was assayed. If the protective effect is still present, then R takes
the value infinity. In any case, when the value of X is only known to lie between (L, R), we
say that X is censored in the interval (L, R). Therefore the observed data consist of either

censoring intervals (L, R) or exact observations X =L = R.

We consider nonparametric estimation of the distribution function F'(t) of a real-valued
random variable X (or its survival function S(¢) = 1 — F(t), where F(t) =P{X < t}), when
the sample data are incomplete due to restricted observation brought about by interval

censoring.




At present, there are only two estimation procedures of S for interval-censored data that
are generalized maximum likelihood estimates (GMLE) in the sense of Kiefer and Wolfowitz
[1]. The first one is due to Peto [2] and makes use of the Newton-Ralphon algorithm. The
second is due to Turnbull [3] and makes use of a self-consistent algorithm. In both cases,

there is no closed form expression for the estimator and the algorithm is sample size limiting.

In the first year of our research, we have focused our attention on interval-censored
data that satisfy a condition which we call DI condition: data {Li,R1},...,{Ln,Rn} are
said to satisfy DI condition if given any two censoring intervals, (L;, R;) and (L;, R;), either
they are disjoint or one is a subset of the other. In a clinical study in which every subject
has the same follow-up schedule, say at time point ay, as, ..., ag, then {L, R} = {0,a,}, or
{ai,a;41} or {a;,o0}, and hence such interval-censoring data will satisfy Condition DL

Under the DI interval-censorship model, we extend Efron’s [4] redistribution-to-the-
right idea for right-censored data and propose a redistribution-to-the-inside (RTI) method to
yield a nonparametric estimator of S(¢) which we call redistribution-to-the-inside estimator
(RTIE), denoted by 8. Such an estimate has a closed form expression and can be quickly
calculated for interval-censored data of any dimension.

In our first year, we have accomplished two important tasks for S

1. We have implemented a computer program coded in the C language to carry out the
RTI procedure, including a Kaplan-Meier [5] type plotting program written in the S+
language for displaying Si(t).
2. We have proved the important result that Sy is strongly consistent.
Two completed manuscripts, one pertaining to task (1) and general properties of Sy for
DI data, and the other pertaining to task (2), are being prepared for submission to peer-
reviewed statistical journals. They are included in the Appendix as part of our first year

report.




BODY

RTI METHOD We here present the idea of our RTI method and the computer
program to calculate the RTTE S;. Denote §; = 1[L; = Ry, Wﬁere 1[A] is the indicator
function of a set A. For convenience, we first assume that there are no ties in the L;’s and
in the R;’s. Let L(; be the i-th smallest order statistic among the L’s and let d;) be the
d; associated with L;, so are X(; and Ry 1 = 1,...,n. An observation is said to be a
complete observation (CO) in an interval, (I,7), if either it is an exact observation which is
included in (,7); or it is a censoring interval which is contained in (I, ).

Although the evaluation of S; does not require any intensive and expensive numerical
computing, it does become tedious when the sample size is large. We have implemented
our first version of a computer algorithm to calculate Sy written in language C. The main
portion of the program is given in the following.

We also include a Kaplan—MQier type plot for S from relapse free survival data from n =
374 women with primary stages I, II breast cancer treated by surgery. The corresponding
usual Kaplan-Meier estimate treating the interval-censored data as right-censored data is

also plotted for comparison purpose.




MAIN PROGRAM FOR RTI PROCEDURE
*/* This is the routine to compute estimates of a distribution */
/* interval-censored data are input from data.in filex*/
/* Three estimates are computed here depending on the selection */
/* in the para.in files */

/* There are two more files: rtie.h and util.c */
/* output file name is given in para.in * /
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <malloc.h>

#include "rtie.h"

#include <time.h>

int END;

float INV_POW;
float para_gen{9] [2];
float **XY;

main() {

int typel3], simu_switch, no_agp, no_data;
int i, 3, n, power();
int endl, Iparal4], *index;
int nout, k, NR, DF;

float R[100];

float **a, **b, para_in[4] [2];

float ¢, xlim, eta;

float x[20], nF[20], pF[20], sF[20];

void 1_gsort():;

void r_gsort();

void swap () ;

void r_swap();

void s_trans();

void data_form() ;

void weight () ;

void print_info(), read data(), print_curve(), print percentile();
void print_cdf () ;

float **dmatrix () ;

char ofname [80], multi_fp[80], junk[80];
time_t tvec;

FILE *infl, *inf2;

float *F;

for (i=0; i< 9; i++)
for (3=0; j< 2; j++)
para_gen[i] [§] = 1.;

/* open 1 input data files */
infl = fopen("para.in", "r");

/* Read the parameter input file */

for (i=0; i< 12; i++)

fscanf (infl, "%s%* [A\n]", ofname);

fgscanf (infl, "%d%* [A\n]", &simu_switch);

fscanf (infl, "%d%* [A\n]", &END);

for (i=0; i< 4;i++) {

fscanf (infl, "%d4", &typelil):

fscanf (infl, "%1f %1f%* [A\n]", &para_in([i] [0], &para_in[i] [1]);

}

fscanf (infl, "%d%* [A\n]", &Iparal0]);

fscanf (infl, "%d%* [A\n]l", &Iparalll);

fscanf (infl, "%d%*[A\n]", &Iparal2]);
P )

’

fscanf (infl, "%d%* [A\n]", &Iparal3]
fscanf (infl, "%s%*[A\n]", ofname);
fclose(infl);

a = (float**) dmatrix(0,1,0,END);




F = (float * ) malloc((unsigned) (END * sizeof (float)));
* index = (int* ) malloc({(unsigned) (END * sizeof (int)));

sprintf (multi_fp, "%s", ofname);

output = fopen (multi_fp, "w");
print_info(simu_switch, END, type, para_in, Ipara);
for (i = 0; i < END; i++) {

al0][i] = 0.0;
af[l] [i]l = 0.0;
F[i] = 0.;
index[i] = 0;

}
time (&tvec) ;
fprintf (output, "TIME:%s\n", ctime(&tvec));

/* open input data file */

inf2 = fopen("data.in", "r");

fscanf (inf2, "%s%*[A\n]", junk):;
if (simu_switch == 0) {

for (i=0; i<END ; i++)

fscanf (inf2, "%1f %1£%* [A\n]", &a[0][i], &al[l][i]):
}

if (simu_switch > 0) {
i=0;
while (i < END) {
read_data(a, &i,inf2,Ipara);

}

fclose(inf2) ;
for (i=0; i<END ; i++)
if (a[0][i]l==all] [i])
all1] [1]=0.0;

if (simu_switch >= 2) {
data_form(a, simu_switch); /*use other two approaches*/

}

1_gsort(a, END, 0, END-1);

i=0;

while (a[0] [1]==NEGATIVE & al[l] [1]>0.0) i++;
endl=i;

r_gsort(a, endl, 0, endl-1);
s_trans(a, endl);

endl = 0;

weight(a, index, &endl, F);
print_cdf(a, F, index, &endl, Ipara);

j = 0;

for (i=0; 1 < 19; i++)

{ while( (x[i] >= a[0] [index[j]]) && (j <= endl))
j++;
nF{i] += F[j-11;
sF[i] += F[j-1]1 * FI[j-1];

}

time (&tvec) ;
fprintf (output, "TIME:%s\n", ctime(&tvec));
}
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CONSISTENCY. Under the DI model, we have proved the important result regarding
the consistency of Sy as a nonparametric estimator of S for interval-censored data. Let us

define

O={tt¢[n, 7]}, n=inf{; P{L <t < R} =1 or t = +oo},

7. = min{sup{¢; P{L < ¢t < R} = 1}, 4+-00}.
We prove that for any F' and censoring distribution function G,

lim sup |S7(t) — S(t)| = 0 a.s.

n—o0 teO

If ; = 400, then O = [0,00). Otherwise,O is either [0,7;) (right-censorship models) or
(7+,00) (left-censorship models) or [0, 7;) U (7,00), where 0 < 7, < 7 < 00. Since there
are no observations within the interval (7, 7,) (w.p.1), thus S() is not estimatable for

te (m,).

CONCLUSIONS

As we point out in INTRODUCTION, interval-censored data are commonly encounted
in breast cancer follow-up studies and there has been a lack of a computationally feasible
statistical procedure for estimating the survival function S even for studies with moderate
sample sizes. In our first year of research, we have completed a computer program that can
quickly evaluate the nonparametric estimator S which we propose, and produce a Kaplan-
Meier type plot as part of the program. In the BODY section, our program quickly produces
the Sy plot for overall relapse free survival for interval-censored data from 374 women with

stages I, IT breast cancer after treatment by surgery. As can be seen from the plot, there is

10




an appreciable difference between the usual Kaplan-Meier estimator and our S; estimator.
The strong consistency that we have established for S; under the DI model is a significant
statistical result. We now can reassure users of S’I that the estimated value of S will be
close to the true value when sample size is moderate.

Our immediate research goals for the second year are to extend the results established
here to the case of non-DI data. Specifically, we will extend the RTI method to obtain the
counterpart of S; for non-DI data. Then we will investigate conditions under which the
corresponding S can be GMLE and can be consistent. We expect these non-DI extensions
to be statistically fairly chanllenging. However, they are obviously very important results,
because the majority of interval-censored data in real applications are likely to be non-DI

in nature.
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Appendix Al

Estimation of a Survival Function With Interval-Censored Data
under the DI Model

Qiging Yu * and George Y. C. Wong **

Dept. of Appl. Math. and Statist.,
State University of New York at Stony Brook, NY 11794, USA
and

Strang Cancer Prevention Center,
Cornell University Medical College, 428 E 72nd Street, NY 10021, USA

AMS 1991 subject classification: Primary 62 GO05; Secondary 62 Al0.

Key words and phrases: interval censorship, redistribution-to-the-inside estimator, dou-
ble censorship, generalized maximum likelihood estimator, nonparametric estimation.

Summary: We consider nonparametric estimation of a survival function with interval-
censored data which satisfy the condition that for any pair of censoring intervals, either they
are disjoint or one is a subset of the other. Extending Efron’s (1967) idea of redistribution-to-
the-right method for deriving the Product-limit estimator (PLE), we propose a redistribution
-to-the-inside method which yields an estimate of the survival function, given by a simple,
explicit expression. The expression reduces to the PLE under the right censorship model
or the left censorship model. The new estimator is shown to be the generalized maximum
likelihood estimator of the survival function in the sense of Kiefer and Wolfowitz (1956),
and hence is self-consistent in the sense of Turnbull (1976). Extension of the RTI method
to the general interval censorship model is also discussed.

1. Introduction. In clinical follow-up studies, subjects are monitored at regular time
intervals for a medical condition. It is often the case that an event under observation can
take place in between two successive visits, and it may not be possible for the subject to
know the time to such event exactly. For example, consider the situation in which a group
of women at high risk for breast cancer is asked to take a chemopreventive substance for a
fixed time period. At the end of the period, each participating woman is required to submit
a blood or urine sample at regular intervals in order to monitor the level of a validated
intermediate biomarker. Let X denote the time from cessation of use of the agent to the
loss of its protective effect qualified as a return to baseline value of the biomarker. If a
woman submits a sample for assay on a daily basis, the value of X can be observed exactly,
unless the protective effect is still present by the time the study is terminated so that X
is right-censored in the usual sense of survival analysis. In practice, however, the follow-up
interval can be a week or longer; therefore the exact value of X is generally unknown but
is known to lie between the time points L and R, where L is the number of days from

*  Partially supported by NSF Grant DMS-9402561 and DAMD17-94-J-4332.
**  Partially supported by DAMD17-94-J-4332.
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cessation of agent intake to the last time the sample was assayed and the protective effect
was still present, and R is the number of days from cessation of agent intake to the most
recent time the sample was assayed. If the protective effect is still present, then R takes
the value infinity. In any case, when the value of X is only known to lie between (L, R), we
say that X is censored in the interval (L, R). Therefore the observed data consist of either
censoring intervals (L, R) or exact observations X = L = R. v

We consider nonparametric estimation of the distribution function F(t) of a real-valued
random variable X (or its survival function S(t) = 1 — F(t), where F'(t) =P{X < t}), when
the sample data are incomplete due to restricted observation brought about by interval
censoring.

Interval-censored observations consist of vectors {Ly, R1}, ..., {Ln, Rn}, where L; < R;,
i = 1,..,n. We assume that these observations are i.i.d. from the population {L,R}.
An observation is said to be exact if L = R = X, and is called a censoring interval if
R—L > 0. A censoring interval is said to be empty if it does not contain exact observations
or other censoring intervals (L;, R;). Interval-censored data are said to be from a DI interval-
censorship model if observations {{L, Rx}; k = 1,...,n} satisfy

Condition DI (Disjoint or Included): Given any two censoring intervals, (L;, R;) and

(Lj, R;), either they are disjoint or one is a subset of the other. '
To illustrate, consider the following two data sets.

(1 (2 )1 )2, (1.1)

where (; stands for L; and ); stands for R;, i = 1,2, that is, L1 < Ly < R; < Ry;

G )1< ([ Gae), ) - (1.2)
2 2

Data set (1.1) does not satisfy Condition DI, whereas Data set (1.2) does. Note that the
familiar right-censored data satisfy Condition DI, with R = +o0 if L < R, since (x,+00) D
(y,+o0) if z < y. Similarly, the left-censored data also satisfy Condition DI with L = 0 if
L < R and with half-closed and half-open censoring intervals [0, R).

In a clinical study in which every subject has the same follow-up schedule, say at
time point ai, as, ..., ag, then {L, R} = {0,a1}, or {a;,a;41} or {a;, 0}, and hence such
interval-censoring data will satisfy Condition DI.

There is only one set of nested censoring intervals in Data set (1.2). Since the right-
censored observations form a unique set of nested censoring intervals, it happens that treat-
ing empty censoring intervals as exact observations, Data set (1.2) is topologically equivalent
to a set of right-censored data: X; < X2+ <X ;’ < X4, where Xi+ stands for a right-censored
observation. However, not all DI data are topologically equivalent to right-censored data.
For example, in the following DI data,

(1)1 ( (3 )s (4 (5 (6(7 (8 )s )7 )6 (9 (10 )10 )9 )5 )4 (11 )11 ) (12 )12, (1.3)

2

2




there are two sets of nested censoring intervals:

( (4(5(6(7(8)8)7)6 )5)4) and ( (4(5 (9(10)10)9)5)4 )

2

They are not disjoint (there are common censoring intervals in these two sets), but they
cannot form a unique set of nested censoring intervals after excluding empty censoring
intervals from the two sets. Thus, Data set (1.3) is not topologically equivalent to right-
censored data.

Peto (1973) and Turnbull (1976) consider the problem of obtaining the generalized
maximum likelihood estimate (GMLE) of the underlying survival distribution based on
interval-censored data (in the sense of Kiefer and Wolfowitz (1956)) using a Newton-Raphson
type algorithm and a self-consistent algorithm, respectively. Bacchetti (1990) addresses
some extensions of Turnbull’s approach. Chang and Yang (1987) and Groeneboom and
Wellner (1992) deal with the problem of estimating the underlying survival distribution
with doubly-censored data and study the corresponding consistency properties. All these
authors, however, do not derive a closed-form expression for their estimator.

It is worth noting that, while the GMLE is unique (Peto (1973)) and is self-consistent
(see Tsai and Crowley (1985)), an estimate derived from the self-consistent algorithm may
not be unique and thus may not be the GMLE. Gu and Zhang ((1993) page 612) give a
counter-example as follows:

Example 1.1. There are two different self-consistent estimates, for a doubly-censored

data set with four observations: V; = i, ¢ = 1,...,4, where V; is exact, V, is right-

censored, and V3 and Vj are left-censored. One self-consistent estimate puts mass 2 /3

at 1 and mass 1/3 at 4, and the other self-consistent estimate puts mass 1/2 at both 1

and 3. The second estimate is the GMLE, but the first is not.

Because multiple solutions are possible in a self-consistent algorithm, Gu and Zhang (1993)
have to add an additional assumption in their theorem for establishing asymptotic normality
(Theorem 2), so that the solution S(t) from a self-consistent algorithm is indeed the GMLE.
Thus it is desirable to find an explicit expression of the GMLE of S. Furthermore, an exact
expression of the GMLE S will facilitate the establishment of its asymptotic normality and
the derivation of its asymptotic variance.

In this paper, we will mainly focus on finding a method to derive an explicit expression
for the GMLE under the DI model. Furthermore, we will study the possible extension of
the method to the non-DI interval-censored data.

Kaplan and Meier (1958) derive the Product-limit estimator (PLE) for right-censored
data. The PLE has a simple expression, in contrast to the numerical solution to the estimate.
Efron (1967) shows that the PLE can be obtained through a reédistribution-to-the-right
(RTR) technique. Efron’s idea can be extended to left-censored data, which results in the
PLE with a simple expression.

In this paper, we extend Efron’s idea and propose a redistribution-to-the-inside (RTI)
method to yield an estimate of S(¢) with data from a DI model. The new estimate, called
the Redistribution-to-the-inside estimate (RTIE), has an explicit expression (see (4.3)). We
show in this paper that under the DI model the RTIE is indeed the GMLE. Thus, in this
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case, it is the closed form solution to the limit of Newton-Raphson algorithm studied by
Peto (1973) and a solution to the limits of the self-consistent algorithm proposed by Turnbull
(1976). As a consequence, it is self-consistent according to the definition given in Turnbull
(1976). In particular, it reduces to the PLE under the right censorship model and under the
left censorship model. Thus, the RTIE unifies the expressions of the PLE with right-censored
data and left-censored data.

The motivation for studying the DI model is to find the explicit expression of the GMLE
for general interval-censored data, in particular, for a non-DI data set. The RTI method
for the DI model may provide some insight on attacking this problem. In this paper, we
modify the RTT method for non-DI data. Such an estimator also has an explicit expression.
We further show that for a special class of non-DI data the estimate derived from such a
modified RTI method is the GMLE. It is worth mention that the data set in Example (1.1)
is a non-DI data set and applying our modified RTT method results in the GMLE too.

The RTI method can be implemented as an n-step algorithm, where n is the number
of observations. However, it is not a special case of the self-consistent algorithm. The RTI
method uniquely defines an estimate; the self-consistent algorithm may result in different
estimates depending on the starting points. The RTI method takes no more than n steps;
the self-consistent algorithm is an iterative algorithm which stops whenever the error is
within a tolerance.

In section 2, we propose the RTI method. In section 3, we show that the new estimator
is a GMLE under the DI Model. In section 4, we give a simplified explicit expression of the
new estimator under the DI Model.

2. RTI Method. In this section, we will propose a method, which extends Efron’s
(1967) RTR technique for obtaining the PLE under the right censorship model. We assume
that the observations satisfy Condition DI. Denote §; = 1[L; = R;], where 1[A] is the
indicator function of a set A. For convenience, we first assume that there are no ties in the
L;’s and in the R;’s. Let L(; be the i-th smallest order statistic among the L’s and let §;
be the d; associated with L(;), so are X(;) and R(;) i = 1,...,7n. An observation is said to be
a complete observation (CO) in an interval, (I,r), if either it is an exact observation which
is included in (I,7); or it is a censoring interval which is contained in (I, 7).

Before we give an estimator of S(t), it is interesting to look at the PLE Spr(t) under
the right censorship model and the left censorship model.

Under the right censorship model, the observations are (L1,01),..., (Ln,0,) and R; =
+o0 if L; < R;. The PLE is

Sep) = [ - 2. 2.1

Li<t n—i+1

Efron’s (1967) introduced the RTR method to obtain the PLE: First put mass 1/n to each
observation L. Consider the smallest censoring time L(;. Since a death did not occur
at L(;), but somewhere to the right of it, it is reasonable to redistribute 1/n, the mass at
L3, equally among all observations to the right of L(; (it can be viewed as to the inside of
(L)s R(3)))- Now consider the next censored time, say L(;) (j > 4); redistribute 1 4+ —1

n{n—1i)
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among all observations to the right of L ;) (it can be viewed as to the inside of (L(;), R(;)))-
Treating the other censored times similarly results in the PLE as in (2.1).

On the other hand, the product limit estimator of the distribution function F'(t) for
the left-censored data can also be obtained by the redistribution-to-the-left (RTL) method.

It can be verified that the data from the left censorship model or right censorship model
satisfy Condition DI. Then from the interval-censored data point of view, both redistribution
methods can be unified as the redistribution-to-the-inside method. Using this method, we
can obtain an estimator S.(t) of S(t) under a more general interval censorship model. We
start with the following example to help illustrating the idea of the RTI method.

Example 2.1. Suppose that we have the following 6 observations:

(G2 GX 6 ) ) ), G o

ie, L1 <Ly < Ry < L3 <Ly=Ry<Ls <Rs <R3 <Ry <Lg<Re(Ly2>0and
Rg < +00). The data satisfy condition DI. Let py, ..., pe be the weights on the observations
{L1,Ry},---,{Le, Re}, respectively. We will derive p;’s in 7 steps:

0. Assign each of the 6 observations weight 1/6, i.e., p§°> =1/6;

1. Since {L1,R:} is a nonempty censoring interval, i.e., the event occured somewhere
inside (L1, Ry), it is reasonable to redistribute its weight p§°) = 1/6 to its inside (unless
it is an empty interval), that is, to its 4 CO’s {La, Ra}, {L3, R3},{L4, R4} and {Ls, Rs}
(thus each has 71 additional weight). Then pgl) =0, pgl) == pgl) =l1+H =2
and pél) =1/6;

2. Since {Lg, Ry} is an empty censoring interval, there is no CO inside (La, R2). p§2)’s
remain the same as in the last step;

3. Since {L3, R3} is a nonempty censoring interval, redistribute its weight p§f) =11+1)
to its 2 CO’s {L4, R4} and {Ls, R5}. Thus pg?’), pg3) and p((f’) remain the same as in the
last step and pgs) =0, p‘(f’) = p§3) =11+ D1+3]= =i

k. Since L4, L5 and Lg are either an exact observation or an empty censoring interval, no
change is made on pgk) 's, k =4,5,6.

The values pgi), i=1,...,6, ie., (0, ;—4,0, %, -1%, %) are the solution to (pi, ..., pe); and

1 ift e [0, Rz)

R 19/24 ifte [Rz, X4)

S.(t) = { 23/48 ift € [Xy, Rs) (2.2)
1/6 if t € [R5, R¢)
0 ift > Rg

is the estimate resulting from the RTT method.

From the example, we can see that the method always redistributes the original weight
1/n on an empty interval to the inside of the same interval, but not to the outside of the
interval. For example, the observation {Lg, Re} is to the right of L, same as {L3, Ry}.
However, it is not inside (L1, R1), but {L2, Ro} is. The weight on the nonempty interval
{L1, R} is not redistributed to all the observations to the right of L;. Thus, it is not a
redistribution-to-the-right method or an RTL method.
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The formal statement of the method is as follows: We first determine the weight p;
assigned to the i-th ordered observation (L), R;)), then the estimator of S (t) can be con-
structed easily. Starting from the left of L(;y < --- < L), with initial weight 1 /n for each
observation, we derive p;’s in n steps. At the k-th step, if the k-th ordered observation
is an exact one or an empty censoring interval, do not make any change to the weights
determined at the last step. Otherwise, distribute the weight assigned at the last step to
the k-th ordered observation, which is a nonempty censoring interval, to the CO’s in the
censoring interval.

The following is the formula to determine p = (p1, ..., pn). Denote

_ [ #{all CO’s in (L(k),R(k))} if 64y =0
Ni = { 0 otherwise, (23)

where #A is the cardinality of the set A. Let the initial value of p; be

PO =1/n,i=1,..,n (2.4)
At Step k, k=1,...,n,
p =p* D, i=k,..,m, if Nj =0
p(k) — 0,
?k) (k-1) | pF7Y . . . £ N > (2-5)
D, =p; + —kJT if L(i) is a CO in (L(k),R(k)) 1 k2> 1.
pgk) :pgk_l) if L(i) is not a CO in (L(k), R(k))

p; = pgz) derived from (2.5) is the weight assigned to the i-th ordered observation by the
estimator S’c, 1=1,..,Mn.

The estimator S, is a probability measure that assigns positive weight to each exact
observation and to each empty censoring interval; and assigns no weight to nonempty cen-
soring intervals. If there are no empty censoring intervals in the data, the estimator of
S(t) is Se(t) = 3 Lesy >t Pir Otherwise, there exists some k such that §z) = 0 and Ny = 0.
It is well known that in such case the GMLE is not uniquely determined in the interval
(L(ky, R(x)) (see Peto (1973)). For convenience, we define that the weight py, is assigned to
R(x). Thus in the latter case, the estimator of S(t) is

Scty="Y m+ >, (2.6)

Ly>t6()=1 R(i)>t,6(iy=0

We call S, the redistribution-to-the-inside estimator (RTIE).
Remark 2.1. The PLE is usually undefined for ¢t > L if §(,) = 0 with right-censored
data and for t < Rz‘l) if 52‘1) = 0 with left-censored data, where Rz*l) is the smallest R;’s and

0(yy is the corresponding 4. Expression (2.6) defines S,(t) everywhere for ¢ > 0.
Remark 2.2. If there is a tie in the L;’s or R;’s, we break the tie as follows:
1. If {L;,R;} = {L;, R;}, i < j, then suppose that L; occurs before L;;
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2. If L; = L; and L; < R; < R;, then suppose that L; occurs before L;;
3. If an exact observation and the left endpoint of a censoring interval are equal, i.e.,
L; = X; = L; < R;, then suppose that X; occurs before L;.
4. If Lj < R;j = L;, then suppose that R; occurs before L;.
Consequently, if, for example, the sample size is two and (L1, R1) and (L, R2) are equal
censoring intervals, we define the order statistics as L(;y = Ly and L(s) = Lg. Furthermore,
we regard {Ls, Ry} as a CO of (L1, Ry), but do not regard {L1, R1} as a CO of (La, Ro).
With the above convention, S(t) as in (2.6) is well defined even when there are ties in
the L;’s or in the R;’s.

3. Generalized MLE. We first define the GMLE. Kiefer and Wolfowitz (1956) sug-
gested that for a given nondominated family of probability measure P one can define a gen-
eralized maximum likelihood estimator as follows: For Py, P> in P, let f(&; Py, P2) = g—g(f),
the Radon-Nikodym derivative of P, with respect to P; + P,. If & represents the observed
data vector, P is a GMLE if and only if

f(& P, P) > f(&;P,P) for all Pin P. (3.1)

It is desirable that the RTIE S'C is a GMLE. It turns out that this is true under the DI
Model. ,

Hereafter, we denote the lower case letters the values of the corresponding random
variables. As discussed in Tsai and Crowley (1985), the definition of the GMLE, P, of an
unknown probability measure P, reduces to P(Z) > P(%), where

P(#) = [[ PAX = 1)}*@ P{X € (L) 7))} 709, (3.2)

i=1

X is the random variable with the distribution function F(¢) and the lower case letters /;’s
are the values of corresponding random variables L;’s. In view of Remark 2.2, without loss
of generality (WLOG), we can assume that there exist no ties in L;’s and R;’s. Note that
the likelihood P{X = I}’ P{X € (I, r@)) 3%, for each observation depends only on
the values of F(t) at the L(;) and R(; (see Peto (1973)). Let P assign probability p; to Iy
if §;) = 1 and to the set Ly, ry) \Us>i{llgys rpl}s i 6y = 0, ¢ =1,...,m, where “\” stands
for set minus. Given an i, the likelihood

5 i+ M; i+M;
P{X = (s PO P{X € (Ig), @)} 00 =p; (D p)' ™00 = Y pj, (3.3)
j=t j=t
where 405 1 S s 0
M; = J5 L) <T@E»d >ty Wow = ,
’ { 0 otherwise. (3-4)
Then (3.2) is equal to
n i+M; n
L=]]> » O pi=1). (3.5)
i=1 j=i =1




It is well-known that if a censoring interval (I;,r;) is empty, the likelihood function L
would not change as long as the weight on the interval remains the same (see Peto (1973)).
Thus the definition of GMLE for ¢ within the empty censoring interval (L;, R;) needs not

- be unique.

Theorem 1. Suppose that the interval-censored data satisfy Condition DI. Then the
RTIE S.(t) (as in (2.6)) of S(t) is a GMLE.

Proof: In order to prove the theorem, it suffices to show the following statement:

(Sn) the (py, ..., pn) that maximizes L as in (3.5) is the same as the (pgl), . p%n)) determined

by (2.4) and (2.5).

We prove it by induction on the sample size n.

When the sample size n equals 1, L as in (3.5) is maximized by p; = 1 and (2.5) yields
pgl) = p§°) = 1. Thus the theorem is trivially true.

Now assume that the statement (Sn) is true for all sample sizes n < m. We will show

that the theorem holds also for n = m.
When sample size is m, in view of Remark (2.2), WLOG, we can assume that

Ly << L. (3.6)

Since Condition DI is satisfied, one of the following occurs:
(1) Li<L;<R;<Ry,i=2,...,m.
(2) the data set can be partitioned into 2 disjoint subsets, with n; observations in the first
subset (1 < nj < m) and ny in the second subset (n1 +ny = m).
By disjoint subsets, we mean max{R;;i < n1} < min{L;;¢ > ni}.
We first assume that case (2) is true. Let p be the sum of the weights assigned to
the elements of the first subset and g the one to the elements of the second subset. Then
p+ q = 1. Note that the likelihood function '

n1 i+M; m  i+M; ni i+M; m i+M;
b= o LTI el = (IICE B0 - [ TT (O 210

It is easy to see that L is maximized by maximizing its three factors :

ny i+M; i m i+M; p; .
[IC° =D, TI(3. =) and p™-q™. (37)
=1 j=i p i>ny  j=ti q

Let y; = p;/p, then > it y; = 1 and i + M; < ny for 4 = 1,...,n;. Thus, the first
product can be viewed as the likelihood [T, Z;";JZW y; of the interval-censored data with
ny observations: {Ly, R1}, ..., {Ln,, Rn, }. Since ny < m, by the induction assumption (Sn),
the first product is maximized by yi(z), i=1,...,n1, determined by rule (2.5) for the sample
size n1 (and by substituting p; = y; in (2.5)).

Let 2;—n, = Ppi/q, t = n1+1,...,m. In a similar manner, it can be shown that the second
product in (3.7) is maximized by z§i), i =1,...,no determined by rule (2.5) for sample size
ng with observations {Ly, 11, Rny+1}, s {Lm, Rm} (and by substituting p; = z; in (2.5)).
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Since the third product in (3.7) is p™ (1 — p)™2, it is maximized by setting p = n1/m
and 1 —p=q=nas/m.
To complete the proof for case (2) when the sample size is m, it suffices to verify that

(1) For the same data, the weights (p(ll),..., pg{” )) determined by (2.5) with n = m,

satisfy pgl) + - -pgil) = ny/m and pfﬂfll) + e +p%n) = ny/m.

(2) The weights, pgz), i =1,...,m, determined by (2.5) for sample size n = m, satisfy
that y; = pz@ /p, i = 1,...,n1, is the weight determined by (2.5) for the sample size n = n;
with observations {Li,R1}, -y {Ln,, Rn,}, 80d 2j—pn, = pgz)/q, i =mny+1,..,m, is the
weight determined by (2.5) for the sample size n = ny with observations {Ln, 41, R, 41},
s {Lumy B }-

We first prove statement (1). Note that none of the observations {Ln, 41, Rny+1}s -y
{Lm,Rm} is a CO of any of the possible censoring intervals (L;, R;), © < ny. Thus the
RTT method will not move any of the original weight 1/m on {L;, R}, i < na, to {L;, R;},
§ > ny. On the other hand, none of the observations {L1, R1}, .., {Ln,, Ra,} is a CO of
any of the possible censoring intervals (L;, R;), i > ny. Thus the RTT method will not move
any of the original weight 1/m on {L;, R;}, i > ni, to {Lj,R;}, j < n1. It follows that
pV 4o pf) = 3 pl® = S0 1/m = ny/m and pEY 4o+ pi? = na/m. Thus
statement (1) holds.

In the following, we prove statement (2). Let pz@), i = 1,...,m, be the values of p;
determined by (2.5) (when n = m). Then for i < n;, multiplying 7 on both sides of (2.4)
and (2.5) yield:

m m .
__ng) =—1/n=1/ny, i=1,..,n1; (3.8)
ni 1
and for k =1,...,n1,
( - . j
%pgk) = %pfk 1), 1=k, ..., n1, if Ny =0
k
mp) = my,
\ m, k) _ m, (k1) mpy : i if N, >1 (39)
Efpik = Mp,; +B— i L) is a CO in (L, Rry) I Ng 2 1. _
k—1 . . .
\ nmlpg ) — ;%pg ) if L(;) is not a CO in (L(k),R(k))

Let yi(k) = %pgk), for possible i and k, then (3.8) and (3.9) yield

y'EO) = 1/n17 P = 17 ey 1, (310)
and for k =1,...,n1,
yz.(k) = ygk—l), 1=k,..,ny, if N, =0
y]E;k) =0,
(k) _, (k=1) | 3070 . : : , (3.11)
yi = yz + _hj‘v‘k_ lf L('L) 1S & CO m (L(k)a R(k)) if Nk Z 1.
g =y if L is not a CO in (L, Ree)
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Note that (3.10) and (3.11) are identical to (2.4) and (2.5), respectively, provided that the
observations are {Ll,Rl}, vy {Lnys Ry, } and n = ny. This proves that the weights, p( 2
i=1,...,m, ass1gned by S, for sample size m, satisfy that y( D= =p; )/p, i=1,...,,n1, is the
weight assigned by S, for the sample size ny with observatlons {Ly,R1}, ..., {Ln,, Rn, }-
In the similar manner, we can show that 2z;_,, = pz /q, i1 =ny+1,...,m, is the weight
assigned by S, for the sample size ny with observations {Ln, 41, Rn, 11}, s {Lm, Rin}. This
completes the proof of statement (2) and the proof for case (2).

To complete the proof for the case n = m, we need to show that S, is the GMLE when
case (1) is true, i.e., (Lj, Rj) C (L1,R1) for all j > 1. Note that if the latter is true, the
likelihood function (3.5) is equal to

m m  J+M;
L= p) [I(D »e) Zprl)
=1 j=2 k=j i=1

Fixing p1 + ps, L increases by setting p; = 0. That is,
(B1) the solution of the GMLE for p; is 0.

When p; =0
m J+M; m
—(sz [T Oom=1)
j=2 k=j 1=2
m J+M;
= H( Z Dk)-
i=2 k=j

The likelihood is the same as the one for the sample size m — 1, with observations (Ls, R2),
veey (L, Rp). Thus
(B2) the solution of the GMLE for (pa, ..., pm), is the same as the solution, (Da1y oees Pam—1)5
of the GMLE with m — 1 observations {Ls, Ra}, ..., { Lm, Rm}
We now show that (2.5) yields (B1) and (B2) too. Note that, for k = 1, since Ny = m—1,

(2.5) yields
M =0, (3.12)

which is the same as in (B1). Furthermore, for k = 1, (2.5) yields
pgl)-—l—kﬁ;/(m—l) L i=2 ..,m.

This can be viewed as (2.4) with n = m — 1 and observations {Lg, Ra}, ..., {Lm, Rm}, say,
1 .
PP =—— i=1,.,m-1 (3.13)

Then
(C) the (p(z) ,pﬁ,’?)) determined by (2.4) and (2.5) for sample sizen =m and k = 2,...,m

is the same as (p*l),..., p,(k"ﬂfb__ll)), determined by (2.4) (or (3.13)) and (2.5) for sample
size n = m — 1 (and replacing p; by p.;), with observations {L2, Ra}, ..., {Lm, Rm}.

10




By the induction assumption (Sn), and conclusions (B2) and (C), the solution of the GMLE
for (pg, .»Pm), is the same as the (pg )P )) determined by (2.4) and (2.5). It indicates

that S, is the same as the GMLE for the data of sample size m. This completes the proof
for case (1). It also concludes the proof of statement (Sn) for n = m and the proof of the

theorem. o )
An estimate S with interval-censored data under DI model is self-consistent if it satisfies

1 S(t) — 5(Rs)
_nZw >t]—|—n > AR

n
i=1 L;<t<R;

It is worth mention that for doubly-censored data, the corresponding equation is different.
A GMLE is a self-consistent estimate. It follows:
Corollary. The estimator S, is self-consistent.

4. A simple explicit expression of the RTIE under the DI Model. It is expected
that the RTIE §, has a simple expression like (2.1) for the PLE. Under the DI Model, the
estimator S,(t) can be expressed in the following form: First note that if (L;, R(;)) and
(L(jy, R¢y) (i < j) are two censoring intervals that contain #, then Condition DI implies
that {Lj), R(;)} is a CO in (L(;), R;))- Given t, referring Ny as in (2.3), define

Nt = {#{ all CO’s in (L), t]}  if d¢r) = 0 and L) <t < R (4.1)
0 otherwise
and

Br(t) = 1[N} > 0]. (4.2)

Then

" 1t>R] < N
_ — 2 \Be(®)

_; ; H (1+ Nk) ](N V5@ (4.3)

where szl zi = 1 for any zx and 20 =1 for all z > 0. Let ¢; < - -+ < t,, be the indices of
all (ordered) censoring intervals that contain ¢ (so that ¢y, ..., ¢, depend on ¢t) and for which
(L(t,)> R(t,n)) is not empty. Then (4.3) equals

= t>RZ
=y AR o+ 505

=1 1

t

(4.4)

Expression (4.4) is another way to express the idea of the redistribution - to - the - inside

method. The first term in (4.4), >, 1@, is the fraction of the CO’s in (—o00, +00) which
are in (—o0, 1], i.e., it is the empirical weight carried by the CO’s which are < ¢. Each of the
t

N . . .
next m summands in (4.4) has two parts: ¥ Is the fraction of the CO’s in the censoring
J .
interval (L), R(;)) which are in (L(;),]. The quantity, LT+ N%,s)]’ is the weight
accumulated at the j-th nonempty censoring interval up to the (j — 1)-th step. Thus the
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j-th summand is the weight distributed to the total of the CO’s in the interval (L;),?]
by the censoring interval (L), R(:;))- This indicates that expression (4.4) is the same as
expression (2.6) under the DI Model.

It can be shown that expression (4.4) reduces to (2.1) with right-censored data and
reduces to the PLE with left-censored data. Thus expression (4.3) or (4.4) is the unified
expression which includes the PLE.
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Abstract: Yu and Wong (1993) propose a redistribution-to-the-inside method to
derive an explicit expression for the generalized maximum likelihood estimator of an un-
known distribution function F with interval-censored data which satisfy that given any
pair of censoring intervals either they are disjoint or one is a subset of the other. We call
such model a DI model. Both the right censorship model and the left censorship model
are special cases of the DI model. Thus, in the latter cases the expression is exactly the
Product-limit estimator. In this paper, we derive the uniformly almost sure limit of the
estimator on [0, +00) for any arbitrary F' and any arbitrary censoring distribution function
G under the DI Model.

1. Introduction. We consider nonparametric estimation of the distribution function
F of a real-valued random variable X (or its survival function S(t) = 1-F(t) = P{X > t}),
when the sample data are incomplete due to restricted observation brought about by
interval censoring.

Suppose that {X1, L1, R1}, ..., {Xn, Ln, Rn} are i.i.d. random vectors from a popula-
tion {X, L, R} and that X and {L, R} are independent. We only observe X if X ¢ (L, R);
otherwise, we only observe {L, R}. Denote G(I,r) the joint distribution function of {L, R}
and V the set of all the possible values (I,7) of random interval (L, R). Denote

« oy {X, X} f X ¢(L,R)
{L*,R*} = {{L, R} otherwise, (1.1)
and denote {L},R;}, ¢ = 1,...,n, in an obvious way. Then {L}, R}, ..., {L},, R};} are
interval-censored observations. An observation is said to be ezxact if LY = R} (in which

* Partially supported by NSF Grant DMS-9402561 and DAMD17-94-J-4332.
**  Partially supported by DAMD17-94-J-4332.
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case, it equals X;) and is called a censoring interval if Rf — L} > 0. Interval-censored data
are said to be from a DI interval-censorship model if observations {{L}, R}}; i = 1,...,n}
satisfy

Condition DI (Disjoint or Included): Given any two censoring intervals, (L], R;)

and (L;f, R;-‘), either they are disjoint or one is a subset of the other.
The following are examples that data satisfying condition DI may arise.

Example 1.1. Suppose that aj, ag,... are scheduled check-up times for patients of
some disease (0 < a; < ag < --- and 0 corresponds to the first visit of each patient). Every
patient is followed according to this schedule to monitor the disease status. We either
know the exact survival time X of the patient or the patient failed to show up since a
scheduled check-up, resulting in an L, which is the time the patient last appeared, thus L
takes value a; € {0,ay,as,...}. In the latter case, either the patient is lost to follow-up so
that R = +oo, or it is learned at time a;4+1 (when he missed the appointment) that the
patient died before R so that R € (a;, @it1]-

Example 1.2. In a cancer follow-up study, patients are monitored for the status of
a clinical outcome, such as relapse or disease progression, at scheduled time points. When
the inter-follow-up interval is wide, say a few months, and the outcome status requires a
careful objective clinical assessment, it may not be possible to know the exact value of the
time-to-event variable X (for instance, time from achievement of a complete response to
disease progression as determined by rigorous pathological findings) for some patients. The
reason for this is that the event can take place sometime between the last and current visits
without the patients noticing any changes until they are examined at the current follow-up.
For these patients, their X values are known only to lie in an interval and interval-censored
data are obtained. In particular, if the schedule is the same for all patients, DI data are
obtained.

Note that the familiar right-censored data satisfy Condition DI, with R = +o0 if
L < R, since (z,400) D (y,+00) if z < y. Similarly, the left-censored data also satisfy
Condition DI with L = —oc0 if L < R.

Peto (1973) and Turnbull (1976) consider the problem of obtaining the generalized
maximum likelihood estimate (GMLE) of the underlying survival distribution based on
interval-censored data (in the sense of Kiefer and Wolfowitz (1956)) using a Newton-
Raphson type algorithm and a self-consistent algorithm, respectively. Chang and Yang
(1987) and Groeneboom and Wellner (1992) deal with the problem of estimating the
underlying survival distribution with doubly-censored data and study the corresponding
consistency properties. Gu and Zhang (1993) establish the strong uniform consistency,
asymptotic normality and asymptotic efficiency of the self-consistent estimator under mild
conditions on the distribution of censoring variables with doubly-censored data. All these
authors, however, do not derive a closed-form expression for their estimator.

Kaplan and Meier (1958) derive the Product-limit estimator (PLE) for right-censored
data. Efron (1967) shows that the PLE can be obtained through a redistribution-to-the-
right technique. Extending Efron’s idea, Yu and Wong (1993) propose a redistribution-to- .
the-inside (RTI) technique, which unifies the redistribution-to-the-right technique and the
redistribution-to-the-left technique (Gomez et al. (1992)), and obtain an estimate with
DI interval-censored data. The estimator, called the RTIE and denoted by S;(t), has an
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explicit expression and is the GMLE under the DI Model (Yu and Wong (1993)).

Gu and Zhang ((1993) page 612) give an example that a self-consistent algorithm may
result in multiple solutions for self-consistent estimate and a self-consistent estimate may
not be the GMLE. Thus it is edsirable to find the explicit expression of the GMLE. The
motivation for studying the DI model is to find the explicit expression of the GMLE for
general interval-censored data, in particular, for a non-DI data set. The RTI method for
the DI model may provide some insight on attacking this problem. Yu and Wong (1994)
modify the RTI method for non-DI data. The method also results in an explicit expression
of the RTIE. They further show that for a special class of non-DI data the estimate derived
from the modified RTI method is the GMLE.

Under the DI Model S;(¢) is the closed form solution to the limit of Newton-Raphson
algorithm studied by Peto (1973) and a solution to the limits of the self-consistent algorithm
proposed by Turnbull (1976). As a consequence, it is self-consistent according to the
definition given in Turnbull (1976). In particular, it reduces to the PLE under the right
censorship model and under the left censorship model. We only consider DI models in this
paper.

We derive the almost sure limit of S (¢) uniformly on [0, 4+-00) for any arbitrary F' and
G (see Theorem 4.2 and Remark 5.1). In proofs, we use a real analysis approach. In light of
the literature, it is conceivable that if we use a stochastic process approach or martingale
approach (see, for example, Gill (1983) or Stute and Wang (1993)), the proof may be
shorten. However, using such approach, additional assumptions on F' or G are needed.
For example, Stute and Wang (1993) use a martingale approach to show that with right-
censored data the PLE is strongly consistent uniformly on the interval ¢ < 7, for any
arbitrary F' and G, provided F and G do not have any discontinuous points in common,
where 7 = inf{s; F(s) = 1 or G(s,+00) = 1}. Using our approach, we do not have
any assumption on F' and G. Furthermore, our main results imply a stronger result than
Gomez et al. (1992) result on the consistency of the PLE with left-censored data: they
show that the PLE with left-censored data is strongly consistent uniformly on ¢ > £, for
any arbitrary to, F and G, provided F(to) > 0 and G(400,tp) > 0. Our main results
imply that the PLE with left-censored data is strongly consistent uniformly on ¢ > 7, for
any arbitrary F and G, where 7. = inf{r; G(4o0,r) > 0}.

In Section 2, we define the notation. In Section 3, we give a consistency proof when G
is discrete. In Section 4, we give the main consistency results (Theorem 4.2). In Section 5,
we discuss the almost sure limit on the half real line. Some proofs of lemmas and theorem
are put in the Appendix. For the convenience of readers, we give details in proofs, which
may be condensed in a future revision. In particular, the Appendix could be deleted in a
future revision, since the main idea of the consistency proof for an arbitrary G is in the
proof of Theorem 3.1 for a discrete G.

2. Notation and the GMLE. Hereafter, we assume that observations are from a DI
Model. Denote §; = 1[X; ¢ (L;, R;)], where 1[A] is the indicator function of a set A. For
convenience, we first assume that there is no tie in the L}’s. Let L7,  be the i-th smallest
order statistic of L}’s and let R’(“i) be the R} associated with LZ‘i), and denote d(;), X(3),
L(;y and Ry in a similar manner, i = 1,...,n. An observation {L}, R}} is right-censored
if Rf = 400 and is left-censored if L} = —co and L} < R. A censoring interval is said
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to be empty if it does not contain exact observations or other censoring intervals (L;?, R;‘)
{L¥, R;} is said to be a complete observation (CO) in an interval if either it is an exact
observation which belongs to the interval or it is a censoring interval which is a subset of
the interval.
The RTI method works as follows. Initial weight 1/n is assigned to each observation.
Then starting from {LZ‘I), *1)}, if it is a nonempty censoring interval, i.e., the event oc-
cured somewhere inside (L(l), (1)) it is reasonable to redistribute its weight equally to the

observations inside the interval; otherwise do not make any change. Treating {L(z),R(z)}

i =2,3,...,n, similarly results in the RTIE S1(¢).
Wr1te Fy(t) =1 — 81(t). Yu and Wong show that

A=Y B2 52 T ar g e )

=1 ji=1 1<k<j

where

0 otherw1se,

#A is the cardinality of a set A,

all CO’s in (L};,,t]} ifdpy =0and L}, <t < R}
Nj = { # { ( ® } othgcr)wise , ® ®) (2.2)

Be(t) = 1[Nt > 0], 2% = Lfor all z > 0 and [, s (14 5-)%® = 1. Under the DI Model,

Yu and Wong (1993) show that Sr(t) is the GMLE of S. It is worth noting that Fr(t) is right
continuous, nondecreasing in ¢ and bounded by [0,1]. It is well known (see Peto (1973))
that the GMLE is uniquely defined in terms of weights on exact observations or on empty
intervals, but is not uniquely defined for ¢ within an empty censoring interval. However, the
definition of the GMLE for ¢ in the following three cases affects its property of the uniformly
strong consistency: (1) the largest order statistic L, ) is right-censored; (2) min;{R}} is
left-censored; or (3) (L{,y, R{,) is an empty censoring interval and Rf,) = min; { R} }.
(See, for example, Yu and Li (1994).) In particular, if case (2) (or case (3)) is true and
Si(t), t < min; R} (ort € [L{ny> Rin))s is defined as in (2.1), then S;(t) is not uniformly
strongly consistent (for ¢ < 7 Delete the following) for ¢t € 0. Thus we use the following
modification.
Remark 2.1. If either case (2) or case (3) occurs, we modify (2.1) as follows: in case -
(2), S7(t) = Sr(min; R}) for t < min; R}; in case (3), define Sr(t) to be a right continuous
step function with a unique jump at the median of L’{n) and R’(“n) for t € [L’("n), zn)]'
Remark 2.2. If there are ties in the L}’s, neither Ny nor expression (2.1) is well
defined. In such cases, we break the ties as follows:
1 If {L},R;} = {L}, R}, i < j, then suppose that L} occurs before L7;
. If L} =L} and L] < R} < R}, then suppose that L occurs before L7;
3. If an exact observation and the left endpoint of a censoring interval are equal, i.e.,
L} = X; = L} < R}, then suppose that X; occurs before L.
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4. If L; < L} = R}, then suppose that R; occurs before L;.
Thus, for example, 1f the sample size is 2 and the two censoring intervals (L3, R}) and
(L%, R3) are equal, we define the order statistics as Lf;) = Li and Ly = L3, and we
regard {L%, R3} as a CO of (L}, R}), but do not regard {L}, R{} as a CO of (L3, R3).
Recall that under the right censorship model, with probability 1 (w.p.1) there are no
exact observations for ¢ > 7, thus, people only study the consistency of the PLE for ¢ < 7.
A similar condition, namely, ¢t € O, occurs in interval-censored data, where

O ={t;t ¢ [r,77]}, n =inf{t; P{L <t < R} =1 or t = +oo},
7. = min{sup{t; P{L < ¢ < R} = 1}, +00}. (2.2)

If 7; = 400, then O = [0,00). Otherwise, O is either [0,7;) (right-censorship models) or
(7, 00) (left-censorship models) or [0,7;) U (7, 00), where 0 < 7; < 7, < co. There are no
observations within the interval (7;,7,) (w.p.1), thus F(¢) (or S(t)) is not estimatable for
t € (m,7,). Denote A the closure of a set A. We will study the consistency of Fy(t) (or
S1(t)) for t € O or on its boundary.

3. Consistency of S;(t) when G is discrete. One of our main results is

(1) lim sup|S;(t) — S(t)| =0 asand (2) lim sup |F;(t) = F(t)] =0as., (3.1
n—00 ¢t n—00 te

for any F' and G. For a better presentation, we first prove (3.1) when G is discrete. The
proof is very typical in terms of the technique used in this paper and is easy to follow. -
The proof of the main result is similar to this proof with modification to deal with the
complexity arising from relaxing the assumption on G.

Theorem 3.1. Suppose that G(l,7) is a discrete distribution function. Then (3.1)
holds.

Proof: Note that (1) and (2) in (3.1) are equivalent. There are two summations in
the expression of Fr(t) (see (2.1)). We will derive their almost sure limits and show that
their sum is F'(t). It is easy to show that the first summation

lim i}—[—lﬁéﬂ = F(t) - P{L < X <t < R)} a.s. uniformly for ¢ >0, (3.2)
n—>00 £ n - o ¥ -7 )
since {R* <t} = {X < t}\{L < X <t < R} (see (1.1). Denote Qy(t) the second
summation in expression (2.1), i.e.,

t

Q) ;% [ 11 a Nk)ﬁ“”](N—jV);;(t—) G NOR) PELEL TS

1<k<j i=1
It follows from (3.2) and (3.3) that
nll)ngo 2161(19) |Fr(t) — F(t)| = nlgglo fgg |Qn(t) —P{L < X <t < R} (3.4)

nll’ngofup 1Qn(t) — ZP{X € (I;,t]}P{(L,R) = (L;, )}, (3.5)




where (Ij,7;), j =1,2,...,m, are all the possible distinct values of V which satisfy:

Iy <+ <lj<t<rj<---<rp (note that I;,r; and m are functions of t),
P{X € (;,t]} > 0, j = 1,...,m (m maybe 0 or +o0). (3.6)

Hereafter, we will show that expression (3.5) equals 0 a.s. (i.e., (3.1) holds). Note that
if m =0, then P{L <t < R} = 0 and N} = 0. Thus Q,(t) =0 =P{L < X <t < R}.
Without loss of generality (WLOG), we can assume that m > 1 a.s. for all £. Since G
is discrete, ties may occur in censoring intervals. Given ¢ and (I;,r;) which satisfy (3.6),
let ¢} = #{4; (Lj,R}) = (I;,7;)} (the number of ties at (lJ,rJ)) for j = 1,...,m. By an
induction argument on m, it can be shown (see Lemma 6.1 in the Appendlx) that

Qn(t)—Z{[qJ[H Metdpoop Shol) e

1<k<j
where

Nt =#{all CO’s in (I;,t]} (= #{k; Xx € (li,t]} — #{k; X € (Is,t], Ly <t < Rp)}),
Bix(t) = 1[N}, > 0], (3.8)
N,;* :#{all CO’s in (li,ri)} (= #{k, Xk € (li,ri)} - #{k,Xk € (li,Ti), (Lk,Rk) D) (li,ri)}).

To derive the limit of @, (t), we need to derive the limits of the three factors in (3.7).
The three limits will be given in (3.9), (3.12) and (3.13) below. Then we derive the limit
of Qn(t) in (3.15). The derivation is as follows.

Since X and {L,R} are independent, we have P{(L*,R*) = (I,r)} =P{X € (I,n)}
-P{(L,R) = (I,r)}, and uniformly for all possible I; < r;,

lim ‘-’5 = lim #is (L4, R;) G} _ prx e 1, ) }PUL, R) = (Ij,77)} 2.5-
(3.9)

To derive the limits of the other factors in (3.7), note that the first equality in (3.8)
yields

lim N,/n>P{X € (I; ]} - P{X € (I;, }P{L < t < R} as. (3.10)

n—o0

for all j and uniformly for all ¢ € O. Since I; < ¢ < r; by notation in (3.6) and ¢t € O, we
have P{L <t < R} < 1. It follows from (3.6), (3.10) and the last inequality that

nl_iygo NI, /n>P{X € (;{]}[1 -P{L <t < R}] >0 as.

for all j and for all t € @. Consequently, lim,,_,o 8;«(t) = 1 a.s.. WLOG, we can assume
that B;.(t) = 1. Then the limit of the last factor in (3.7) is given by

t : t
N;, limy, 00 Nj*/n

(=

Nj* limn_,oo Nj*/n

)

lim
n—ro0




_ P{X et} -P{X €t L* <t <R}

" P{X € (lj,r;)} —P{X € (I3,75), (L, R) D (I, r5)}
P{X € (1,8} — Yhy PIX € (58], (L, R) = ()} = 58 PAX € (18], (L, R) = (i, m3)}
- P{X € (lj,r))}1 - X0, P{(L, R) = (i, 7:)}]
P{X e (I;,t]} >is; P{X € (lz,t]}P{(L R)= ()}
TP{X € (,r)}  P{X € (lj,r)}1- XL, P{(L,R) = (li,rs)}]

uniformly for allt € O, j > 1.
The limit of the product in the summand of (3.7) is given by

I N« +qp _ I P{X € (l;ri)H1 = e P{(L, R) = (n, 1) }]
P{X € (le,re) HL — Xh<n PA(L, R) = (In, 7n)}]
1
T T PC R = )}
uniformly for all t € O, j > 1. (3.7), (3.9), (3.12) and (3.13) yield

(see (3.8))

(3.12)

N
kx 1<k<j

(3.13)

nll)rglo Qn(t) —; { [P{X € (l,,rj)}P{(L,R) (la’ .7)}] — th P{(L,R) = (in, )}
. [ P{X € (1;,t]} _ Zz>] P{X € (;,t]}P{(L, R) = (li, )} }
P{X € (lj,r)}  P{X € (Ij,r))}1 - X1, P{(L, R) = (li,m:)}]

™ (P{X € (I3 tIP{(L, B) = (45,7)}
J;{ Zh; P{(L,R) = (lh,Jrh)} (3.14)

_ P{@R) = ()} iy, PAX € (1 tP{(L, B) = (b, i)} } as
[1 = Y hej PAUL, R) = (tn, ) HIL = 225, P{(L, R) = (liym)}]

uniformly for all ¢ € @. In view of (3.5), to prove the theorem it suffices to show that the
last expression of (3.14) equals Y"1, P{X € (I;,t]}P{(L, R) = (l;,;)}. That is

PX € (;, }P{(L, R) = (5,7}
0= Z{ =5 P B) = ()
PR () T PO € (DR(L) = (r)
1= o0, PULB) = ()T — s PUT R) =l 7o)

_ > P{X € @ IP{L.R) = ()} (3.15)

=1

S (PLX € (i tP{(L, B) = (b, 7e)} ~
,;{ TS PUL B = )y T € Bt B = (o (3:16)

3 Z P{(L, R) = (4, mj)}P{X € (I, t]}P{(L, R) = (Ui, )} ]}
1<j<k Zh<j P{(L’R) = (lh’rh)}][l - Z:l P{(L,R) = (liari)}] ,

7




which is proved in Lemma 6.2 (in the Appendix) by showing that each summand in ex-
pression (3.16) equals 0. This completes the proof of the theorem. o

4. Main results. In this section, we will prove (3.1) assuming F' and G are arbitrary.
We will also investigate the consistency of Sy(t) (or F'()) on the boundary of O. We first
establish Lemma 4.1, which reduces the uniformly almost sure convergency to the point-
wise almost sure convergency.

Lemma 4.1. Suppose that {F,}n>1 is a sequence of monotone functions on an
interval [a,b) and F(t) is a bounded monotone and right continuous function on the interval

[a,b). If

lim F,(t) = F(t) V t € [a,b) and lim F,(t—) = F(t—) V t € (a,b],
n—0o0 n—oo

where F(t—) = limgys F(s), then limy o0 SUP;e[qp) [Fn(t) — F(2)] = 0.

If F is continuous then the lemma is a well known result. The proof of the lemma is
very similar to the proof for a continuous F' and is put in the Appendix.

It is easy to verify that S; (t) is a monotone function of ¢, in view of Lemma 4.1, to
prove (3.1), it suffices to show that

(S1) lim S1(t) = S(t) and (S2) lim S1(t-) = S(t-), (4.1)

for each t € O, (S1) holds for ¢ = 7, and (S2) holds for ¢t = 7;. To avoid the complexity on
the boundary of O, we first treat the case that ¢ € O in Theorem 4.1. On the boundary of
O, depending on whether F or G is continuous on the boundary, there is some modification
on the proofs, thus we give the proof for each case separately (in Lemmas 4.3, 4.4 and 4.5).
However the main idea is similar to the proof of Theorem 3.1.

Theorem 4.1. For any arbitrary F and G, and for any ¢ € O, (4.1) holds.

Proof: We first show equality (S1) by mimicing the proof of Theorem 3.1. Note that
in the latter proof, the arguments up to (3.4) hold for any F and G. Hence, (3.4) implies
that it suffices to show that

ILIEO Qn(t)=P{L< X <t<R}.

or equivalently, to show that for any large positive integer m, we have

Tm {Qu(t)-P{L<X<t< R}} < O(1/v/m) as. (4.2)
Iim { ~ Qu(t) +P{L < X <t < R}} <O(1/Vm) as. (4.3)

WLOG, we can assume that (—00,0) € V. Denote B = U nyey(l,r) and B its
complement set. If ¢ € B°, then P{L < t < R} = 0 and thus Q,(¢)=0 since N} = 0
for all k (see (2.2) and (3.3)). It follows that P{L < X <t < R} = 0 = Qy(t), which
implies (4.2) and (4.3). Thus we assume ¢ € B. To show (4.2) and (4.3), we will mimic the
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arguments from (3.5) through (3.14) in the proof of Theorem 3.1. However, there may be
uncountably many elements in V such that (3.6) holds. Thus we modify (3.6) as follows:
Given t € B and given a large positive integer m, we can find a finite partition, {Cy, },
of the set {(I,7) € V; | <t < r} such that C,, satisfies:
(1) Cpm ={Ds; i=1,..,m}, where m; (<m),
o Jle(li—as bl € [ri,rs +b;) ifag, b >0
Dz-—{(l,r)EV. {l—l(orr—n) if a; =0, (or b; = 0) }’
(2) ll—a’l Sll S"'Slmt—amt Slmt Stgrmt S'r"mt +bmt _<_ ”'S’rl Srl_l_bl)
(3) lm, =sup{l; (l,r) eV,I<t<r P{X € (l,t]} > 0},
(4) 7, = inf{r; (I,r) eV,i<t<r, P{X € (l,t]} > 0}, (4.4)
(5) G(l;—, +o0) — G(l; — a;, +00) < 4/m, F(l;-) - F(; - a;) < 4/m,
(6) G(400,7; +bi—) — G(+o0,73) < 4/m, F(ri+bi—)— F(r;) <4/m, 1 <i<my,
(1) P{(L,R) e U2, D;} =P{L <t< R},
where Iy = —00, and 9 = co. WLOG, we can assume that a; = l; —1;_; and b; = ;3 — 7y,
i=1,...,ms. Then D;, (5) and (6) in (4.4) reduce to
{Y L e (lz 1, ] Re [7"1,7'1 1)}
(5") G(lz—,—l—oo) G(li—1,+0) < 4/m, F(l;—) — F(li—1) < 4/m,
(6") G(+00,7i—1—) — G(+00,7;) < 4/m, F(ri-1-) —F(r;) <4/m, 1 <i < my.
In the proof of (4.2), we need a condition: ¢t € Ap,, where

m = {t € B; P{X € [lm,,Tm,]} 2 1/v/m}.
However, it can be shown (see Lemma 6.3) that
(S3) if (4.2) and (4.3) hold for all ¢ € Ap,, then (4.2) and (4.3) hold for ¢t € B\ Ap,.
Thus, WLOG, we can assume that t € A,,. It follows from (2) in (4.4) that

P{X € [l;,7i]} > P{X € [lm,,"m.]} > 1/vV/m fori=1,...,my. (4.5)
To establish an expression for @, (t) corresponding to (3.7), we further denote
Y = {L, R}’ Y*= {L*,R*}a Yi = {l’iari}7
Dz_ = {Y, Le (li_1,li] & R € (’I“q,,’l‘z 1)’ or L e (lZ 1,4 ) & Re [’I“z,'l'z 1)},
Niju = #{CO’s in [l;,ri]}, Ni_ =#{CO’sin [i;,t]}, Bi—(t) =1[Nf,_ > 0],
for all possible z'. Given t € [a,b], for i =1,...,my, let
=#{5;Y; €D} g =#{5; Y7 €D} (7 =0 — @),

= #{j; L* R} =1; or 1;}, A #{CO’s in (l;-1,1;) orin (r;,ri—1)}.
Usmg the same 1dea as 1n proving (3.7), it can be shown that

z ' H Ni*—+qi_+Ai Bi—x(2) H Nix + @ + Di\ Bin () Ni,_

Niw— + A Niw + 4 (Npy_)Bre-( + Ay

1<i<h 1<i<h

N'*_ ‘_+A' i — % Nz* o Az i % Nt
‘Ih, H ix— T q; i\ Bi—x () H +q; + )ﬁ (t) hx }<Qn(t)(4-6)

1zigh Nt Bi Niw + A (Npa )P @)

1<i<h




and

: 0 , t
Qn(t)<z qh, H Nz*—+q7, Bi—x (%) H (N,L*—i-qz Bix (t) Nh*-—+Ah

. . — t
1gicn Nin- 1<icn  DNix (Npsoe)Pre=(8 + Ap,

Qh H Nz*—+Qz )ﬁt «(t) H NZ*+qz Bis () Ni* } (4 7)

n Niv_ Nox (Nir) B ®

1<i<h 1<i<h

The proof is relegated to the Appendix (see Lemma 6.4). We will use (4.7) to prove (4.2)
and use (4.6) to prove (4.3).

We first show (4.2). By reasoning similar to that before equation (3.12), WLOG,
we can assume Sy (t) = Bre—(t) = 1 and thus we omit the exponents Bx«(t) etc. in the
expressions of (4.7). Note that if G is discrete and only takes values at (l;,7;), i = 1, ..., my,
all the ratio indexed with “¢+—” vanish and the expression on the right hand side of (4.7)
reduces to (3.7). On the other hand, if G is continuous, then ¢) = 0 and g5 = g; w.p.1,
and (4.7) reduces to

— % — 7 Nt*-— AN
hs Z{ (q—h) ( 1<i<h NNi: : )(N:*_ i A:)} (4.8)

If G is neither continuous nor discrete, the proof is similar to that for the continuous case.
For ease in understanding, we will assume that the joint distribution function G(I,r) is
continuous. Thus we will prove (4.8), instead of (4.7).

We now derive the limits for the three factors in the summation of (4.8). The following .
argument is parallel to (3.9) through (3.16) in the proof of Theorem 3.1. The limit of g»/n
is given by lim, o0 2 = P{Y™* € D3} a.s. (see (3.9)) and

P{Y* S Dh} = P{X € [lh, 'I'h]}P{Y € Dh} + P{X € (L, lh) U (’rh, R), Y € Dh}
= P{X € [ly,rs]}P{Y € Dy} + O(1/m?). (4.9)

Thus the limit of the first factor in (4.8) is
lim 2 = = P{X € [ls,7s]}P{Y € Dp} + O(1/m?) as.. (4.10)

n—oo n

Since G is continuous, P{(L, R) D [l,r]} =P{(L,R) O (I,r)}. Then

fm M=t G o 04 B )

n—00 i n—oo Ni*_/n
P{Y* € D;}
P{CO’s in [l;,r;]}
P{X € [l;,m]}P{Y € D;} + O(1/m?)

P{X € [l;,r;]} = P{X € [li,ri], (L, R) D [l;,74]}

P{X € [ls,ril}[1 — ;< P{Y € D;} + P{Y € D;}] + O(1/m?)

P{X € [li,r:]}1 - > ;<; P{Y € D;}]

-3, P{Y e D} + O(m~3/?)
B [1-3<iP{Y € D;}]

10

=1+ (see (4.9))

(4.11)

a.s. (due to (4.5)).




As a consequence, the second factor in (4.8) satisfies:

im (Nz;\; + Qi)

n—00 1 Zich x—
¢ ] (Pl € D3} Olm
B 1<i<h 1= < P{Y € D;}

< 1+0m=?) [1 ~ Y« P{Y € Dj} + O(m™%/?)
“1-Ycn 1 PY € Dj} 2<i<h—1 1-3,. P{Y € Dj}
1 1 -V jcm, P{Y € Dj} +O(m—3/%)

1= 2 j<n-1PLY € Dj}[ 1= m P{Y € D;} [ (4.12)

Note that the summation in the denominator of the last expression
3" P{Y € D;} =P{(L,R) D (lm,-1,"m,—1)} SP{L <t <R} <1 (see (2.2)).
J<my

since ly,—1 < t < Tm,—1, t € O, which is an open set. Denote dop =1 —P{L <t < R},
which is independent of the integer m and is > 0. It follows from (4.12) that the second

factor in (4.8) satisfies:

N +q; < 1 do +O(m™*?) .,
)—1—2 P{YeD«}[ d ]

j<h—1 J 0

1

<
1= <p1 P{Y € D}

lim i
n—oo 1S7I<h X

[1+0(m™?/do)] as..  (4.13)

Note that by the assumption on C,, we have

=P{X € (lh-—-la lh) U ("'h,"'h—l)} - P{X € (lh—h lh) U ('I‘h, 7'h.—1)a (L*,R*) D (lh, rh)}

SP{X c (lh,—la lh) U (’I“h,'l"h_l)}[l — P{(L, R) D) (lh—la "'h—l)}]
<(8/m)dy (by (5') and (6') in (4.4) and by (4.12)).

. Dn
lim |—
n—>c0 1N

Hence, the last ratio in (4.8) satisfies

m Nipe 80 Ni,_ +0(1/m))
n—00 Npy— + Ap ~ n—oo Npo
[P{X € [ln,t]} — P{X € [lp,t],L* <t < R*}]+ O(1/m)
P{X € [lh,rh]} -— P{X € [lh,rh], (L,R) D [lh,rh]}
_P{X et} - b P{X € [ln, 1], (L, R) € D;}
P{X € [ln,mal}[1 - Ticy P{Y € Dy}
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N -7 P{X € (L,1],Y € D;} (L
P{X € [ln,ra]}[1 - 0, P{Y € D;}] dov/m
_P{X €[l t]} — S P{X € [ln, t]}P{Y € D;}
P{X € [ln,ral}[1 - sy P{Y € Di}]
— X0 PUX € [l tP{Y € Di} + O(/m)[1 - Ti, PIY € DY]
(
P{X € [ln,rs]}[1 - Y0, P{Y € D;}] do\/_
_P{Xelwt]} _ EEPIX el t}P{Y € D} (-
P{X € [ln,mal} P{X € [ln,ra]}[1 - X, P{Y € D;}] do/m
(4.10), (4.13) and (4.14) give the limits of the three factors in (4.8), thus

) ( due to (4.5))

)

) a.s.. (4.14)

— “ 1+ O(m~1/?)
T Qu(t) < h; {[P{X € I, ral}P{Y € Di} +0(1/m)] = S P70
G PX ety NS PIX e[l thP{Y € Di} —
[P{X € [ln,ral}  P{X €>[lh,rh]}[1 —h  P{Y € D;}] * 0(1/(\/_)]}

< Z {P{X € [l }P{Y € Da}  P{Y € Da} X705 P{X € [li, t]}P{Y € D;} }
i P{Y €D} [1-%,,,P{Y € Dj}][1 - i, P{Y € Di}]
+ 0( ~1/2) as.. (4.15)

Moreover

my
P{L<X<t<R}=) P{L<X<tY €D}
h=1

=S P{ih < X <1} +O/mIP(Y € Dy}
h=1

mye
=Y "P{X € [ln, t]}P{Y € Dn} + O(1/m). (4.16)
h=1
Thus it follows from (4.15) and (4.16) that

lim {Qn(t) —P{L < X <t<R}}

n—o0

Z {P{X € [ln, t]}P{Y € Dn} P{Y € Dp} 313 P{X € [I;,t]}P{Y € D;} }
- J<hP{Y€D } [1_Zj<hP{Y€D }][1_Zz=1P{Y€D }

- Z P{X € [ln,{]}P{Y € Dy} + O(m~?) as.. (4.17)
h=1

Notice that expression (4.17) is identical to expression (3.15) except that m; is replaced
by m, Y € Dy, by (L, R) = (Ip,74), [li, t] by (l;,t] and O(l/m_l/z) by 0. Thus

Im {Qn(t) -P{L< X <t<R}} < Zsh +0(m~?) as.,

n—o0 h=1
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where s, is the same as the summand in (3.16), except that (L, R) = (Ix,74) is replaced
by Y € Dy, and (I;,t] is replaced by [l;,]. The same argument as in the proof of Lemma
6.2 yields Y r+t; sp = 0. (4.2) then follows.

With the same idea, we can show that (4.3) holds. This completes the proof of (S1).

In a similar manner, we can show (S2). This completes the proof. o

If 7, = 400, Theorem 4.1 yields (3.1). If 7, < 00, in order to show (3.1), we need to
further verify (S2) of (4.1) for ¢t = 7; and (S1) of (4.1) for ¢ = 7. It can be verified that
the proof of Theorem 4.1 can be applied to all ¢ € O, provided that for each t € O,

P{(L,R) D [lmy,rmi]} (=1—do) <1. (4.18)

(4.18) is needed in (4.13) etc.. However, (4.18) may not hold on the boundary of O.
To show (4.1) on the boundary of O, we first establish three lemmas.
Lemma 4.2. For any arbitrary F and G,

lim S’I(n) < lim S’I(n——) < S(m—) a.s. and lim SI(TT) = lim SI(T»,»-G-) > S(r,) as..

n—00 n—r00 n—oo n—roo

It is worth noting that due to our convention S;(t) is right continuous, thus Si(m) =
g[(’ﬁ,--i-) in the lemma. The proof of the first inequality is identical to Yu and Li (1994,
Lemma, 2). The proof for the second inequality is similar to that for the first one.

Lemma 4.3. For any arbitrary F and G,

(1) if F(r—) =1, then (52) of (4.1) holds for t = 7;
(2) if F(,) =0, then (S1) of (4.1) holds for t = ..

The proof of the first inequality is the same as Yu and Li (1994, Lemma 4). The proof
for the second inequality is similar to that for the first one.

Lemma 4.4. For any F and G,

(1) if P{L = 71} > 0 then (S2) holds for t = 7;
(2) if P{R = 1.} > 0 then (S1) holds for t = 7.

Proof: We first prove statement (1). Note that if t = 7, and P{L = 7y} > 0, then
do > 0 (see (4.18)) and P{(L, R) D (l;,r;)} £ 1—dp <1 for t = 7;. It can be checked that
in the proof of Theorem 4.1 all the statements from (4.6) through the end of the proof
hold for ¢ = 7. This completes the proof of Statement (1). Statement (2) can be proved
similarly. o

Lemma 4.5. For any arbitrary F and G, (S2) in (4.1) holds for t =7 and (S1) in
(4.1) holds fort = ..

Note that Lemmas (4.3) and (4.4) are special cases of the theorem. The proof of the
theorem is relegated to the Appendix.

Remark 4.1. When G(r;—, +00) = 1, if t = 7; then we would never observe any exact
observation at 7; (w.p.1). Thus due to the convention in section 2, we have S’I(n ) =
S'I('rl) = S'I(L’(n)). In particular, if G(t,400) is continuous at ¢ =7 but F(t) is not, then

nll)ngo Si(m) = nli)rgo Si(n—) = S(n—=) > S(n) as..
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However, due to the convention on Sz (t), S;(t) is right continuous at 7, and so is S(¢).
Thus, S7(r,) always converges to S(7,) a.s..

In view of Remark 4.1, it is easy to derive the following result:

Lemma 4.6. If F(t) is continuous at 7, then lim,_, o SUp, |S’1(t) - S()| =0 as..

It follows from Lemmas 4.1, 4.3, 4.4, 4.5 and 4.6 that the following result holds.

Theorem 4.2. Let O* = OU{r,.}. Under the DI Model, for any arbitrary F' and G, |

lim sup |S;(t) — S(t)| =0 a.s.;

n—oo tEO*

lim su2|5'_r(t) — S(t)| = 0 a.s. unless F(r;—) < F(7n) and G(1;—,+00) = 1.

n—}ooteo

5. Discussion. A direct consequence of Theorem 4.2 is the following result related -
to the PLE with left-censored data. R

Corollary 1. For any arbitrary F' and G, the PLE Spr(t) with left-censored data
satisfies limy, 0 SUP;>,. [SPL(t) — S(t)| =0 ass..

It is interesting to see that the PLE with left-censored data does not carry over the
short-coming of the PLE with right-censored data at 7;. As implied by Theorem 4.2,

lim sup |Spr(t) — S(£)| =0 as.

n—00 tS’T't

failed for arbitrary F and G with right-censored data. The short-coming does not depend
on the definition of Sy(t) for ¢ > L.
With right-censored data, it has been proved that

For any arbitrary F and G, lim sup |S.(t) — S(t)| =0 a.s.
n—>o0 t-<_L>(kn)

(see Yu and Li (1994)). The corresponding statements with interval-censored data are

lim sup 15.(t) — S(t)| = 0 a.s., (5.1)

™0 min; RY¥<t, or <Ly,
which follow from Theorem 4.2.
Finally, it is desirable to derive the almost sure limit of S;(t) over the entire region
0 if 7=0and 7 < c©
{t > 0}. Define M = { 247%™ if 0 <7 and 7, < 400 It is easy to derive the following

+o00 if0< 7 and 7, = +00.
result.

Remark 5.1. limy, 00 SUPp<t<-, 15:(t) — 8(7-)| = 0 a.s. and

{limn_,oo sup, <rcnr [9e(t) = S(n-)| =0 it S(r=) > S(n) and G(n—,+00) =1;

limy, 00 SUP,, <t 15:(t) — S(m)| =0  otherwise
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It is well known that the GMLE is not uniquely defined in empty intervals. However

the uniformly strong consistency of the GMLE does depend on the definition over empty
intervals (see Yu and Li (1994)).

The natural extension of S7(¢) from expression (2.1) assigns weight only to R}. How-

ever, this convention will affect both (3.1)Aand Theorem 4.2. Finally, we point out that
(5.1) does not depend on the definition of S7(t) over empty intervals.

*
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Appendix

We give the proofs of lemmas in this section. This section could be deleted and put
in a technical report in a future revision.

Proof of Lemma 4.1: Since F is bounded, monotone and right continuous on [a, b),
for any € > 0, there exist finitely many points, t1,...,tx € [a,b) such that @ = t; < {2 <
s < g, |[Ftig1—) — F(t:)| <, for i = 1,...,k, where tx41 = b. Since Fy(t) converges to
F(t)forallt =t¢;,i=1,..,k and forall t =¢,—, i =2, .., k + 1, there exists an ng such
that whenever n > ng we have |F,(t) — F(t)] <e¢, for all t = ¢;, ¢ = 1,...,k, and for all
t=t;—, i=2,..,k+ 1. For any t € [a,b), there exists some i such that ¢ € [t;,#;11), then

|[Fn(t) = F(2)] (6.1)
<max{|Fn(ti) — Ftir1-)|, [Fn(tiva—) — F(:)[}
<max{|Fn(t;) — F(t:) + F(t:) = F(tig1—)|, [Fativi—) — F(tipr—) + F(tipa—) — F(&:)[}
<2,

whenever n > ng. Since t and € are arbitrary, the lemma follows. o
Proof of Lemma 4.5: WLOG, we can assume that 0 < 7; < 7, < +o0. It follows
from Lemmas 4.1, 4.3 and 4.4 that it suffices to show that

nli)ngo 181(n=) = S(n—)| =0 as., if F(n—) <land G(m—,+00)=1; (6.2)

Tim 81 (1o+) — S(72)] = 0 as., if F(r;) > 0 and G(+00,7) = 0. (6.3)

We first show (6.2). Notice that Tim Sy(m—) < S(7—) a.s. by Lemma 4.2. Then (2.1),
(3.2) and (3.3) yield e

lim Q.(n—)>P{L< X <7 <R} (6.4)

n—o0

Thus it suffices to show that .
Iim Qn(n—) <P{L<X <7 <R}if F(n—)<1land G(r—,+00)=1. (6.5)

n—roo
Hereafter, we assume F(r;—) < 1, G(1—,+o0) =1 and t = 7j— (see (6.2)), then it
yields I, = 7; (see (4.4)) and 7y, = 7. Thus do = 1 —=P{(L, R) D (Im,,m,)} = 0 and the
proof of Theorem 4.1 is not applicable directly, since it needs do > 0 (see (4.18) or (4.13)).
To mimic the proof of Theorem 3.1 or 4.1, we modify (4.7) as follows:

Qn(?)
el , - , 0 t

<& O IO LG et
28 I 50 D ) 60
+ qr;r:t 1ngt (i\f_]%q_,‘_ ) lsgmt (NN+ % ) max{wﬁi‘;—@; L}y € (lmy-1, n)}
(+ q%* 1_<_]i;Imt (N—N"—?) ISLIW (NN+ i ) ( Nmi’t)’};;*(t) (which equals 0)).
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(6.6) can be proved in a similar manner as in deriving (4.7). The only difference between
(4.7) and (6.6) is in the third summand (mdexed by m;:). Note that when t = 7,—, N}, , =0
(see (3.8)) and thus the fourth expression in (6.6) equals 0.

WLOG, we can assume that S(r,—) — S(7) = ap > 0. Otherwise, since 7, < 7. and
in view of Lemma 4.2, we have

S1(m=) < S(n—=) = 8(r,) < 81(r+) < 81(n—) as

i.e., (6.2) and (6.3) hold.

Let the notation be the same as in the proof of Theorem 4.1, it can be verified that
the arguments between (4.6) and (4.17) remain true except the following: P{X € [l;,r;]} >
ao > 0 for t = m—, thus it does not need the restriction (4.5). In order to show (6.5) or
equivalently (4.2), it suffices to show that inequalities (4.13) and (4.14) holds.

To this end, as argued in the paragraph after (4.8), WLOG, we can assume that G is
continuous, and we further assume P{Y € D;} =1/(m), i = 1,...,m;. (6.6) reduces to

me—1

L N’*_ T q% Nj,_ + Oy
(6.7
Z { 1<I'1h, 7'*— Nh*_)ﬁh*—-(t)_l_Ah )
I ] (R tt N
’ " H (—NL::_) max{m’ G) € (lmt—laTl)}. (6.8)
1S'L<mt g

Since P{X € [l;,7;]} > ao > 0 for all i if [; < 7, < 7, in a similar manner as in deriving
(4.13), we can show that for £ = 7,—,

Nz*—-+Qz
JE%O II )

1<i<h

Z]QP{Y €D; }+O(1/m )
1<z<h ZJSZ P{Y € D;}

1+ O(1/m?) [1 Yicim +0(1/m?)
_1—2j<hP{Y€DJ} 2<'<h 1 1_23<’L—1%

1 - Z—I—Ol/m)

]

]

a.s., h <my.

S1—zj.<hp{y et L. H

(It is worth noting that O(1/m?) in the above expression is due to P{X € [l;,;]} > ao > 0
and O(1/m3/2) in (4.13) is due to P{X € [l;,r;]} > 1/(m/?)}.) Since

+ 0(1/m? 2 4 0(1/m?) T YR 4 O(1/m?
1<Hm ni/ )_2<1:[\/_m %(/ )>1::/[—m‘|‘\/_;7_§/ )
§(1+O(1/m)) (1+0(1/ m3/2)) oV

<1+ 0(1/m?), (6.9)

3
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1

Nz*— + q;
lim =
n—00 1<Iz—£h N ) 1- Zj<h P{Y € Dj}

(14 O(m~?)).

This is inequality (4.13) for t = 7,—.
It can be verified that the argument in proving (4.14) holds for h = 1,...,m;—1, which
is the upper bound for the limit of the third factor in expression (6.7). We need to show a
similar inequality corresponding to (4.14) holds for A = m;. The third factor in expression '
(6.8) satisfies
. N}_
Jim sup { 57 ~B- Ll € Ume-vy m)}
s
<su { [P{X € [I,t]} - P{X € [l,t], L* <t < R*}]
=SPARIX e[,y —P{X € [, ], L+ B) S 7]}
< {[P{X €Lt} -P{X e[, (L, R) D [,,r]}].
P{X e[l,r]} -P{X e[,r],(L,R) D [l,r]}’
P{X e[l,t]}
BX e l,r]} 1 € (lmy—1,71),7 € (T, Pme—1), (I,7) € V} (6.10)

<0(1/(may)) (due to (5') in (4.4))
_P{X €[n,t]} > ism, PAX € [li, t]}P{Y € Di}
P{X elmm}y P{Xenn]}1l-2r P{Y € D;i}]
This is the inequality corresponding to (4.14) for h = m;. Thus the arguments between

(4.13) and (4.17) hold. As a consequence (6.5) holds. It follows from (6.4), (6.5) and (3.4)
that (6.2) holds.
(6.3) can be shown using the same idea. This completes the proof of the lemma. o
Lemma 6.1. Using the notation as in the proof of Theorem 3.1, (8.7) holds.
Proof. We will prove the lemma by induction on m (see (3.7)).
m = 1. By the definition of m, there is only one (ll,rl) in V such that ¢t € (I,71).
Suppose that there are q; ties, say, (L%, R}) = --- = (Ly,, R} ) = (l1,71). It follows from
the convention on the ties (see Remark 2.2) that
1. Nj = Ny +aq —j, j < q, since {L, R} isaCOof (L;_,,R;_,) fori=2,...,q1;
2. Nt .o+ =N} = Ni,, since L} <t < R}, 1< qu;
3. N§ = B;(t) = 0 for i = g+1,..,n.

If N?, > 0 (and thus ,Bi(t) =1,14 < q), then (3.3) yields

N l € (lmt-—-]_,?-l),r € (Tr;’rmt—l)a (l,T) € v}

L€ (tme-1,7),7 € (T T, 1), (17) €V}

<sup {

+ O(1/m) a.s. (since t = 7—).

— t Nt
nlt) = ; 1<Hk<J(l+ Nk AT (N; )’Ba(t)

— Z H 1 )] Nf*

_1 1<k<j Nl*+Q1—k N1*+Q1—j
1, Nt . . .

= [ N1:] (which can be proved by induction on ¢;) (6.11)
il Ny + qieq N3,

=2 TT )
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That is, (3.7) holds if N}, > 0. If N{, = 0, (3.7) is trivially true. Thus (3.7) holds for
m=1.

Now assume that (3.7) holds for m — 1, we will show that (3.7) holds for m. By

assumption, there are m distinct (I;,7;)’s satisfying I3

<y <t<rpy <o <y
WLOG, let {Li’ I} - = {Lq1’ q1} = {ll’rl}7 ey {L;1+"'+qm—-1+1’R21+"‘+qm—1+1} =
= {LZ1+-~~+qm’ ;1+~-+qm} = {lm,m}, where g1 + -+ ¢m < n. Then
Qo m " t
— ﬁ ] "3
&= [ I a+57)"] (V)5 ®
j=1 1<k<j J
m—1 t
N;
{ QJ] H (Nk* + Qk ﬂk*(t)][m]} (by induction assumption on m — 1)
j=1 1<k<j
q1+ “+qm

+

. n
=g+ +gm-1+1

> 1

1<k<]

(6.12)

WLOG, we can assume that N}, > 0 (and thus Bjx(t) = 1), then the last summation

equals
g1t tam t
> I e+
j=41+'--+qm—1+1 1<k<J (N) ’

qa+t-+am .
1 [ 1111 1 1 N
= ¥ = 1+ ——)]|I II (1+ )]+
j=qi+-t+gm-1+1 n 1<k<m 1<s5<qx Nis +ar— s ] a1t amo1+1<k<] N, Nj
4+t qm t
Nix + gk @ 1 1 N
II = — > II (1+ =)= (6.13)
[1<k< N ] J—q1+ +gm—1+1 n @+t gmo1+1<k<] Ni " N;
II & Z [T a+ ) .
[1<k<m ] = 1<k<j m* +Qm k Nm* +q'rn, — 7]
=[1<1;£m(——*—“—Nk* )][—;][W] (see the third equality in (6.11)).

Then (6.12) and (6.13) yield (3.7) for m. This completes the proof of Lemma 6.1. o

Lemma 6.2. Ezpression (3.16) in Theorem 3.1 equals 0.

Proof: Denote by > p- ; {sk expression (3.16). To prove the lemma, it suffices to
show that each summand, sk, in summation (3.16) vanishes

It is trivial when k = 1. When k > 2, denoting 3 }_,a; =0ifi <1

_P{X € (b, tIP{(L, R) = (I, )}
1- Zh<k P{(LaR) = (lharh)}

—P{X € (I, t]}P{(L, R) = (g, &)}
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—Eﬂ PALR) =)} P(X € U IPULB) = (i)
j=1 1- Z:h<j P{(L’R) = (lh’ rh)} 1- Zg=1 P{(L’R) = (liari)}
P{X € (I, P{(L,R) = (I, ")} _ 0
S P B = ) O €GP = (o)
__{ P{(L, R) = (be—1,T%-1)} PﬂYe(uJHP{UAR)=(han}
1= w1 P{ILR) = (hymn)}  1- 5 P{(L,R) = (li,3)}
_’“f { P{(L,R)=(lj;r))}  P{X € }P{(L,R)= (lk,Tk)}}
S U-Yh PULR) = (orn)} 1= 30, P{(L, R) = (b, 7)}
={1—zzhwhm=amm-HXemﬂw«am=awwq
1- Y hen 1 P{ILR) = (horn)} 1M P{(L,R) = (I, 7:)}
'-23{ P{(L,R) = (t,r;)} PLXG(@JHP{qu)=(quH}
— Y he; P{L,R) = (In,mn)}  1— Y P{(L,R) = (I, r:)}
:P{X € (I, tIP{(L, R) = (ks 7x)}
1- Eh<k—1 P{(L>R) = (lh""h)}

B "’2’:2{ P{(L,R) = (I;,;)} P{X e (l.’“’t]}P{(L’R) = (lk’rk)}}
1—) i PAL,R) = (nyrn)}  1-Y1_ P{(L,R) = (li,7:)}

— P{X € (s, t]}P{(L, R) = (I, 7x) }

It is important to note that the last expression has the same pattern as the first expression,
except that

k—1 k—2
and Z in the first one are replaced by Z and Z in the last one,
i=1 h<k j=1 h<k—1

>

respectively. Thus inductively, we can show that Z;:ll and ), in the first expression
can be replaced by Z]l;i and ), ;- That is

_ P{X € (I, }P{(L, R) = (e, s)}
%“1—Emmwm=mMn
—Z{ P{(L,R) = (ij,r))} PMe%mem:wm”
— 2o PUL R) = (Insn)} 1300 P{(L, R) = (liy )}
_P{X € (s P B) = (1)} — PAX € (1, }P{(L, B) = (b5, 72))
=0. o

- P{X € (lkat]}P{(L’R) = (lk,T’k)}

Lemma 6.3. Statement (S3) in the proof of Theorem 4.1 holds.
Proof: Denote A%, = B\ A,,. We will show that
(S4) Ay, is a closed set,
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thus, A, is an open set, which equals U;>1(as, b;), where the (a;, b;)’s are disjoint open
intervals and a;,b; € A,, U B¢ U {£o00}. Then we will show that
(S5) P{X € (a;,b;)} < 1/4/m for any 1.

By the condltlon in the lemma, (4.2) and (4.3) hold for ¢ € Ap,; moreover, (4.2)
and (4.3) hold for ¢ € B by the arguments after inequality (4.3); furthermore, (4.2)
and (4.3) hold if ¢ = Foco. The reason of the last statement is as follows. If ¢ = oo,
P{L <t < R} = 0. Thus N} = 0 and Qn(t) = 0 (see (2.2) and (3.3)). It follows that
P{L < X <t < R} = 0= Qn(t), which implies (4.2) and (4.3). As a consequence, if t = a;
or b;, (4. 2) and (4.3) hold and

181(t) = S(t)| < O(1/v/m) (see (3.3), (3.4) and (3.5)).
Since both S;(t) and S(t) are nonincreasing function of ¢ and in view of (S5), it is easy
to show that |S7(t) — S(t)| < O(1/+/m) for t € (ai, b;), which is equivalent to inequalities
(4.2) and (4.3) for ¢ € (aj, b;). Thus the proof of the lemma will be completed after we
show (S4) and (S5).

To show (S4), let {tx} be a sequence of points in A, which satisfies limg_,c0 tx = to-
We need to show that to € A,,. By the notation in the proof of Theorem 4.1 (see the
definition of A,,), for each t, P{X € [ly,,"m,]} > \/4_ where

lm, =sup{l; I <t <7 (l,r) e V,P{l< X <to} >0},

Tm, = mf{r; 1 <ty <r,(I,7) € V,P{l < X <to} > 0}

It can be seen that the sequence of intervals (I, , 7m, ) also satisfy Condition DI. Since the
probability is bounded by 1, there are at most finitely many disjoint (I, , Tm, ). WLOG, We
can assume that [, , Tmy] D [lmpsss Tmiga)s b > 1. It follows that P{X € [lmg, o]} > \/—’
where [lmgs Tmo] = Nkllmy, Tm,] and it can be verified that

Imo =sup{l; 1 <to <r,(I,r) € V,P{l < X < to} > 0},

Tme = inf{r; I <to <r,(l,7) € V,P{l < X <to} > 0}.

As a consequence, to € Am. Thus, A, is closed i.e., (S4) holds.

We now show (S5). Given (a;, b;), it follows from the definition of A2, that for each ¢ €
(a;, b;), there is an interval (It,7;) € V such that P{X € (l;,1¢)} < 4/\/_ and [y <t <ry.
The collection {(ls,7¢);t € (ai, b;)} is a cover of (a;, b;) ie., Us(ls, r) D (as,b;). It follows
that either (1) there is an (I;,7¢) D (as, b;) or (2) there are three points t1,ts,t3 € (a;,b;)
and two intervals (I, 7, ) and (ly,,74,) in the collection {(ls,7¢);t € (as,b;)} such that
ts € (I, 78,) N (legs7t,), t1 & (liy,74,), t2 € (L, 7s,) and &1 < t3 < t2. However, case
(2) is impossible since (l4,,7¢,) and (ls,,74,) violate Condition DI but they belong to V,
whose elements satisfy Condition DI. It follows that there exists at least an (I¢,7:) in this
collection such that (I3, 7:) D (a;,b;). Then P{X € (a;,b;)} < P{X € (Is,74)} < 4/+/m.
Thus (S5) holds. o ‘

Lemma 6.4 Using the notation in the proof of Theorem 4.1, (4.6) and (4.7) hold.

Proof: The proof of the lemma is an analog of the one for Lemma 6.1. In the following,
in order to avoid exponents (;.(t) etc. (see (4.6)) we first assume that Np,,. # 0. Thus
Nj, #0 for all j < mg. ‘

We first prove (4.6) and (4.7) for m; = 1.

Let Y}, ... Y* be the Y;*’s which belong to D7, then

Niwe +q7 —k < Nj, £ Npwe +q7 —k+ Ay, (6.14)
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Njk - Nl*—+q1_—k+A1

IT 1+ ! M.

1<j<k N1*_+q1_—j+A1 Niw—+q; —k+ 2L
Nt 1 g

< "J(t)i since (14 —)7® = 1if g;(t) = 0
N. N J
1<_7<,7k Ik J
1 Ni,_ 4+
< I (1+N et (6:15)
1<j<k -t 47 =7 Niw— + ¢4 + Ay

for k= 1,...,q7 . Let p; be such that Ly ) < L <Ly, .y Summing up each term in (6.15)
over k=1,...,q; yields

S 11 0+ 1 M.
k=11<j<k Nl*_+q1_—-7+A1 Nl*—+q1 _k+A1
p1—q1 -q7 "
B ®) Nk
< Y JI @ g :
k=1 1<j<k J (Nk)ﬁ’“()
q
1 Nt A
E (1+ Lo T 21 (6.16)
k=11<j<k Nl*—+q1 *J Nl*-+ql —k+A1

The second summation in (6.16) is due to N} = Bx(t) = 0 if k < py — ¢ — ¢ and if
k¢ {j1, » Jg- }- That is,

pi—df —a}
N}
k

ﬂg() 53()
Z H t Z H 1+"'T t(Nk)ﬁk(t)

k=11<j<jk =1 1<j<k N;
By an induction argument on ¢, we can show that
L1ypo N B; (®) ONl*
Z II @ NO@D 11 (1+ Nj) iy (6.17)
k>p1—qf —q? 1S5<k k 1<j<p1—g;f —q?

Simplifying the first and the third expression in (6.16) yields

Ni.— e g N Nt + D
- < 1+—-— g k< g 1= . (6.18
Ul Nl*_+A1 kz:l 1<J].—I<k NJ (Nk)ﬂk(t) Sq Nl*— +A1 ( )




Inequality (6.14) also yields

1 B; (¢)
1+ . < 1+ 7
IT N1*—+(l1_'—]+A1) 11 ( NJ)

1<j<qy 1<j<p1—qf —¢?

(6.19)

1
< 14+ =
II ( Nl*— _l_ql

1<5<q;
Simplifying the first and the third product in (6.19) yields

(Nl*—+q;+A1) S H (1+_1_),31(t) < (Nl*—+ql_).

Nie— + A N; Ny
! ! 1<j<p1—qf —¢¢ ’ !
(6.17) and (6.20) yield
Nie +q7 + A1 N ﬁ(t) N}
04Vv1l 1 1% 5 'k
Q1 L (2 S Z H
Ny + 41 NP et —g0 127K NP

< qON]-*"‘ +q1_ Nf*
S )

(6.18) and (6.21) yield

Ni,_ o(Nl*—+qf+A1) N,
GO A TN 1A @

1 —
B;(t) Nk
< 1+— 7
ZH SRR AT 0]

<q- N1*_.. + A qo(N1*~ + q1 \B1«(t) Nl*
= 1
PNP-O LA Ny NP @

).

—J

(6.20)

(6.21)

(6.22) .

It can be seen that if Np,,. = 0, (6.22) is still true. (6.22) is equivalent to (4.6) and (4.7)
when m; = 1. (The above arguments are similar to the induction argument when m =1

in the proof of Lemma 6.1.)

Mimicing the arguments between (6.14) through (6.22), we can show inductively that

(4.6) and (4.7) hold. o
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